Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Funct Integr Genomics, v. 19, n. 1, p.151-169, jan. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2649

RESUMO

Coffea arabica L. is an important agricultural commodity, accounting for 60% of traded coffee worldwide. Nitrogen (N) is a macronutrient that is usually limiting to plant yield; however, molecular mechanisms of plant acclimation to N limitation remain largely unknown in tropical woody crops. In this study, we investigated the transcriptome of coffee roots under N starvation, analyzing poly-A+ libraries and small RNAs. We also evaluated the concentration of selected amino acids and N-source preferences in roots. Ammonium was preferentially taken up over nitrate, and asparagine and glutamate were the most abundant amino acids observed in coffee roots. We obtained 34,654 assembled contigs by mRNA sequencing, and validated the transcriptional profile of 12 genes by RT-qPCR. Illumina small RNA sequencing yielded 8,524,332 non-redundant reads, resulting in the identification of 86 microRNA families targeting 253 genes. The transcriptional pattern of eight miRNA families was also validated. To our knowledge, this is the first catalog of differentially regulated amino acids, N sources, mRNAs, and sRNAs in Arabica coffee roots.

2.
Funct Integr Genomics ; 19(1): p. 151-169, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15784

RESUMO

Coffea arabica L. is an important agricultural commodity, accounting for 60% of traded coffee worldwide. Nitrogen (N) is a macronutrient that is usually limiting to plant yield; however, molecular mechanisms of plant acclimation to N limitation remain largely unknown in tropical woody crops. In this study, we investigated the transcriptome of coffee roots under N starvation, analyzing poly-A+ libraries and small RNAs. We also evaluated the concentration of selected amino acids and N-source preferences in roots. Ammonium was preferentially taken up over nitrate, and asparagine and glutamate were the most abundant amino acids observed in coffee roots. We obtained 34,654 assembled contigs by mRNA sequencing, and validated the transcriptional profile of 12 genes by RT-qPCR. Illumina small RNA sequencing yielded 8,524,332 non-redundant reads, resulting in the identification of 86 microRNA families targeting 253 genes. The transcriptional pattern of eight miRNA families was also validated. To our knowledge, this is the first catalog of differentially regulated amino acids, N sources, mRNAs, and sRNAs in Arabica coffee roots.

3.
Genet Mol Biol ; 40(1 suppl 1): 346-359, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28399192

RESUMO

Nitrogen (N) is quantitatively the main nutrient required by coffee plants, with acquisition mainly by the roots and mostly exported to coffee beans. Nitrate (NO3-) and ammonium (NH4+) are the most important inorganic sources for N uptake. Several N transporters encoded by different gene families mediate the uptake of these compounds. They have an important role in source preference for N uptake in the root system. In this study, we performed a genome-wide analysis, including in silico expression and phylogenetic analyses of AMT1, AMT2, NRT1/PTR, and NRT2 transporters in the recently sequenced Coffea canephora genome. We analyzed the expression of six selected transporters in Coffea arabica roots submitted to N deficiency. N source preference was also analyzed in C. arabica using isotopes. C. canephora N transporters follow the patterns observed for most eudicots, where each member of the AMT and NRT families has a particular role in N mobilization, and where some of these are modulated by N deficiency. Despite the prevalence of putative nitrate transporters in the Coffea genome, ammonium was the preferential inorganic N source for N-starved C. arabica roots. This data provides an important basis for fundamental and applied studies to depict molecular mechanisms involved in N uptake in coffee trees.

4.
Genet. mol. biol ; 40(1,supl.1): 346-359, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892391

RESUMO

Abstract Nitrogen (N) is quantitatively the main nutrient required by coffee plants, with acquisition mainly by the roots and mostly exported to coffee beans. Nitrate (NO3-) and ammonium (NH4+) are the most important inorganic sources for N uptake. Several N transporters encoded by different gene families mediate the uptake of these compounds. They have an important role in source preference for N uptake in the root system. In this study, we performed a genome-wide analysis, including in silico expression and phylogenetic analyses of AMT1, AMT2, NRT1/PTR, and NRT2 transporters in the recently sequenced Coffea canephora genome. We analyzed the expression of six selected transporters in Coffea arabica roots submitted to N deficiency. N source preference was also analyzed in C. arabica using isotopes. C. canephora N transporters follow the patterns observed for most eudicots, where each member of the AMT and NRT families has a particular role in N mobilization, and where some of these are modulated by N deficiency. Despite the prevalence of putative nitrate transporters in the Coffea genome, ammonium was the preferential inorganic N source for N-starved C. arabica roots. This data provides an important basis for fundamental and applied studies to depict molecular mechanisms involved in N uptake in coffee trees.

5.
Genet Mol Biol ; 38(2): 182-90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26273221

RESUMO

Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs) has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1) in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible), the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant) was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...